
Graham Steel 4 March 2013

Introduction to Security APIs
Graham Steel

In this Lecture

I What is a Security API?
I Examples from Secure Hardware
I Formal tools and for analysis
I New security APIs

Graham Steel - Introduction to Security APIs 4 March 2013 - 2/ 55

What is a security API?

Trusted deviceHost machine

Security API

Graham Steel - Introduction to Security APIs 4 March 2013 - 3/ 55

Security API Examples

Untrusted Trusted
client application tamper-resistant smartcard
host machine Hardware Security Module (HSM)
web application web service API
web application web browser API
smartphone app Sandbox APIs
process hardened OS

Graham Steel - Introduction to Security APIs 4 March 2013 - 4/ 55

Crypto 101

Symmetric key crypto

e.g. DES, 3DES, AES

Graham Steel - Introduction to Security APIs 4 March 2013 - 5/ 55

Graham Steel - Introduction to Security APIs 4 March 2013 - 6/ 55

Secure Hardware History

Military:
WW2 Enigma machines
- captured machines used to help break codes
NSA devices with explosive tamper resistance
-
http://www.nsa.gov/about/cryptologic_heritage/museum/

Commercial:
IBM: Cryptoprocessors for mainframes
- tamper-resistant switches on case
ATMs (cash machines)
- Encrypted PIN Pads (EPPs) and Hardware Security Modules
(HSMs)

Graham Steel - Introduction to Security APIs 4 March 2013 - 7/ 55

http://www.nsa.gov/about/cryptologic_heritage/museum/

Secure Hardware History - 2

Cryptographic Smartcards
- chip contains cryptoprocessor and keys in memory
- used in SIM cards, credit cards, ID cards, transport. . .
Authentication tokens
- generate One-Time Passwords, sometimes USB connection
Trusted Platform Module (TPM)
- now standard in most PC laptops
The future..
- Secure Elements in mobile phones, cars,. . .

Graham Steel - Introduction to Security APIs 4 March 2013 - 8/ 55

Example 1 - Cash Machine Network

I The ‘Killer app’ for cryptography according to Anderson (on
alt.security, see e.g.
http://axion.physics.ubc.ca/atm.html)

I Introduced in the UK in the late 1960s, first modern machines
(with DES) in the 70s and 80s

I 2.2 million ATMs worldwide
(http://www.atmia.com/mig/globalatmclock/)

I Network is now global and ubiquitous (at least in cities)

Graham Steel - Introduction to Security APIs 4 March 2013 - 9/ 55

http://axion.physics.ubc.ca/atm.html
http://www.atmia.com/mig/globalatmclock/

Simplified Network Schematic

ATM

HSBC

Maestro UK

SocGen

Graham Steel - Introduction to Security APIs 4 March 2013 - 10/ 55

HSMs

I Manufacturers include IBM, VISA, nCipher, Thales, Utimaco,
HP

I Cost around $20 000

Graham Steel - Introduction to Security APIs 4 March 2013 - 11/ 55

A Word About Your PIN

IBM method: IPIN derived by

Write account number (PAN) as 0000AAAAAAAAAAAA
3DES encrypt under a PDK (PIN Derivation Key),

decimalise first digits
PIN = IPIN + Offset (modulo 10 each digit)

Offset NOT secure!

Graham Steel - Introduction to Security APIs 4 March 2013 - 12/ 55

API attack example: VSM (Bond, 2001)

Graham Steel - Introduction to Security APIs 4 March 2013 - 13/ 55

Example: Print Customer PIN

Host → HSM : PAN, { PDK1 } Km

HSM → Printer : { PAN } PDK1

Graham Steel - Introduction to Security APIs 4 March 2013 - 14/ 55

Example: Send PDK to Terminal

Host → HSM : { PDK1 } Km, { TMK1 } Km

HSM → Host : { PDK1 } TMK1

Graham Steel - Introduction to Security APIs 4 March 2013 - 15/ 55

Terminal Comms Key

Graham Steel - Introduction to Security APIs 4 March 2013 - 16/ 55

Managing Key Types

Graham Steel - Introduction to Security APIs 4 March 2013 - 17/ 55

Example: Enter TC key

Host → HSM : TC
HSM → Host : { TC } Km2

Graham Steel - Introduction to Security APIs 4 March 2013 - 18/ 55

Example: Send TC to Terminal

Host → HSM : { TC } Km2, { TMK1 } Km

HSM → Host : { TC } TMK1

Graham Steel - Introduction to Security APIs 4 March 2013 - 19/ 55

Attack - Step 1

Spy → HSM : PAN
HSM → Spy : { PAN } Km2

Graham Steel - Introduction to Security APIs 4 March 2013 - 20/ 55

Attack - Step 2

Spy → HSM : { PAN } Km2, { PDK1 } Km
HSM → Host : { PAN } PDK1

Graham Steel - Introduction to Security APIs 4 March 2013 - 21/ 55

Dolev-Yao Modelling

Following a seminal 1983 paper on formal analysis of security
protocols:

Bitstrings modelled as terms in an abstract algebra
Cryptographic algorithms modelled as function on terms

Attacker controls network but cryptography is ‘perfect’

Attack modelled as derivation of secret term

Secrecy in general undecidable (see e.g. [Durgin et al. ’99])

Graham Steel - Introduction to Security APIs 4 March 2013 - 22/ 55

Dolev-Yao Modelling 2

Atomic terms: pdk1, km, km2, pan, . . .

Functions: {.}.
Intruder rules:
e.g. x, y→ {x}y
API rules:
e.g. {x}km, {y}km → {x}y
Semantics of model can be described by transition system

Graham Steel - Introduction to Security APIs 4 March 2013 - 23/ 55

Attack Search

Start with ‘initial knowledge’ of intruder

e.g. pan, {pdk1}km, {tmk1}km

apply rules
Note: intruder knowledge increases monotonically, no need to
backtrack in search

Goal is to derive term {pan}pdk1

Can automate search with model checker, theorem prover, or
custom tool

Graham Steel - Introduction to Security APIs 4 March 2013 - 24/ 55

Modelling With Horn Clauses

Form of rules:

P1, . . . ,Pm ⇒ Q

can be written

¬P1 ∨ . . . ∨ ¬Pn ∨ Q

Note one positive literal (Q)
These restricted first-order clauses have a simpler theory and are
easier to work with in practice.

Graham Steel - Introduction to Security APIs 4 March 2013 - 25/ 55

Deduction with Horn clauses

Automated deduction usually uses (variants of) the resolution
inference rule

¬P1 ∨ . . . ∨ ¬Pn ∨ Q
¬R1 ∨ . . . ∨ ¬Rn ∨ S

(¬P1 ∨ . . . ∨ ¬Pn ∨ ¬R2 ∨ . . . ∨ ¬Rn ∨ S)θ

where θ is most general unifier of R1 and Q

Since resolution is refutation complete and first-order unification is
decidable, we can search automatically for a proof of a negated
conjecture (security property)

Graham Steel - Introduction to Security APIs 4 March 2013 - 26/ 55

VSM Modelling

(only one predicate symbol P(.), hence we omit it)

X,Y → {X}Y
{X}Y,Y → X

new tmk−−−−−→ {tmk} km
TC → {TC} km2

{PDK} km, {TMK} km → {PDK} TMK
{TC} km2, {TMK} km → {TC} TMK

+ 7 more

Graham Steel - Introduction to Security APIs 4 March 2013 - 27/ 55

VSM using First Order Theorem Provers

API and intruder modelled in 13 Horn clauses, 12 terms in initial
knowledge

Appears as problem SWV237 (www.tptp.org)

Attack found in < 1 sec by several provers (Vampire, E,. . .)

VSM now has clear TC entry instruction disabled - problem SWV238

Only E can find a model (problem has no finite models)

Graham Steel - Introduction to Security APIs 4 March 2013 - 28/ 55

www.tptp.org

Summary of First Half

I Security APIs as a paradigm
I Secure hardware needs a secure API
I Cash machine network and HSMs example
I APIs can be modelled in an abstract way

following Dolev and Yao
I Tools such as First-Order Theorem Provers

can be used to facilitate analysis

Graham Steel - Introduction to Security APIs 4 March 2013 - 29/ 55

Next half

I A more complex secure hardware API:
IBM 4758 CCA

I Modelling XOR
I More attacks
I Proving decidability of security for certain APIs
I Modern API examples

Graham Steel - Introduction to Security APIs 4 March 2013 - 30/ 55

IBM 4758 CCA API

Graham Steel - Introduction to Security APIs 4 March 2013 - 31/ 55

CCA Types - 1

The Common Cryptographic Architecture (CCA) API uses the
same ‘master key’ architecture as the VSM
However, the (patented) type system is much richer
Before encrypting a working key, the master key is XORed against
a ‘control vector’ indicating the type of the key
The control vectors are public values (they can be found in the
programmers’ manual), but the master key is secret
Control vectors can be composite, i.e. they may consist of a
number of values XORed together

Graham Steel - Introduction to Security APIs 4 March 2013 - 32/ 55

CCA Types - 2

Graham Steel - Introduction to Security APIs 4 March 2013 - 33/ 55

CCA API - Examples

Encrypt Data:
Host → HSM : { d1 } km⊕data, message
HSM → Host : { message } d1

Verify PIN:
Host → HSM : { PINBlock } p1, PAN, { pdk1 } km⊕pin,

OFFSET, { p1 } km⊕ipinenc
HSM → Host : yes/no

Graham Steel - Introduction to Security APIs 4 March 2013 - 34/ 55

Bootstrapping

A common problem in the use of secure hardware

How to get the initial secrets onto the device (or encrypted by the
device’s master key) in a secure way?

A common solution is ‘separation of duty’: several members of
staff are given individual parts of a secret.

Each individual part is worthless, so only collusion between several
staff members can expose the secret.

Graham Steel - Introduction to Security APIs 4 March 2013 - 35/ 55

Importing Key Parts

Separation of duty between e.g. 2 security officers
Key k = k1 ⊕ k2

Host → HSM : k1, TYPE
HSM → Host : { k1 } km⊕kp⊕TYPE

Host → HSM : { k1 } km⊕kp⊕TYPE, k2, TYPE
HSM → Host : { k1 ⊕ k2 } km⊕TYPE

Usually used to import a ‘key encrypting key’ ({ KEK } km⊕imp)

Graham Steel - Introduction to Security APIs 4 March 2013 - 36/ 55

Importing Encrypted Keys

Exported from another 4758 encrypted under KEK⊕ TYPE

Key Import:
Host → HSM : { KEY1 } KEK⊕TYPE, TYPE, { KEK } km⊕imp
HSM → Host : { KEY1 } km⊕TYPE

Graham Steel - Introduction to Security APIs 4 March 2013 - 37/ 55

Attack (Bond, 2001) (part 1)

PIN derivation key: { pdk } kek⊕pin
Have key part { kek⊕ k2 } km⊕imp⊕kp for known k2

Host → HSM : { kek⊕ k2 } km⊕kp⊕imp, k2⊕ pin⊕ data, imp
HSM → Host : {kek⊕ pin⊕ data} km⊕imp

Graham Steel - Introduction to Security APIs 4 March 2013 - 38/ 55

Attack (Bond, 2001) (part 2)

Key Import
Host → HSM : { pdk } kek⊕pin, data,

{ kek⊕ pin⊕ data } km⊕imp
HSM → Host : { pdk } km⊕data

Encrypt data
Host → HSM : { pdk } km⊕data, pan
HSM → Host : { pan } pdk (= PIN!)

Graham Steel - Introduction to Security APIs 4 March 2013 - 39/ 55

Formal Modelling of the CCA

Encrypt data:

x, {d1 } km⊕data → { x } d1

Extended intruder rules:

x, y → {x } y
{ x } y, y → x

x, y → x ⊕ y

Also need
x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z

x ⊕ y = y ⊕ x
x ⊕ x = 0

Graham Steel - Introduction to Security APIs 4 March 2013 - 40/ 55

Using FOTP

Problem SWV234 in TPTP

11 rules, 15 items in knowledge set

However, only most recent version of Vampire can find the attack

‘Combinatorial explosion’ caused by XOR is the problem

Cannot verify fixes using TPTP provers (yet..)

Graham Steel - Introduction to Security APIs 4 March 2013 - 41/ 55

Characterisation of API Class

Finite set of atoms (km, imp, data, pin, . . .)

XOR term ::= atom
atom ⊕ XOR term

Encryption term ::= { XOR term } XOR term

Well Formed Term ::= Encryption term
XOR term

Well Formed Rule ::= WFT, . . ., WFT → WFT

Graham Steel - Introduction to Security APIs 4 March 2013 - 42/ 55

Theorem

If:
R finite set of well-formed rules
S finite set of well-formed ground terms
u some ground well-formed term
Then:
S `R u ⇐⇒ S `R u using only well-formed terms.
Corollary:
The question of whether S `R u is decidable

Graham Steel - Introduction to Security APIs 4 March 2013 - 43/ 55

Proof Sketch

The theorem is proved by induction.
Conditions for API R, initial knowledge S

I R contains the rule x , y → x ⊕ y ;
I S contains 0 (the null element for XOR should always be

known to an intruder).

Define function t 7→ t
e.g.
{a ⊕ {a}b}c ⊕ {c}b = {a}c ⊕ {c}b.
Show that t 7→ t preserves deducibility

Graham Steel - Introduction to Security APIs 4 March 2013 - 44/ 55

Designing the Decision Procedure

Thanks to our theorem, we have a finite set of possible terms an
attacker may learn

However, in a typical model (one key of each type) we may have
12 atoms (km, imp, data, pin, d1, p1, . . .)

That means that there will be:
212 possible unencrypted terms
224 possible encrypted terms ({ . } .)

This is more than general purpose first-order theorem provers can
deal with at present

Graham Steel - Introduction to Security APIs 4 March 2013 - 45/ 55

Representation Change

Encode terms as integers by fixing an arbitrary ordering on the
atoms:

kek⊕ pin⊕ data → km kp kek imp exp data pin
19 ← 0 0 1 0 0 1 1

{kek⊕ pin⊕ data}km⊕data is represented by

km kp kek imp exp data pin km kp kek imp exp data pin
0 0 1 0 0 1 1 1 0 0 0 0 1 0

↓
2498

Graham Steel - Introduction to Security APIs 4 March 2013 - 46/ 55

Representation change - contd.

Each rule is now a partial function f : Nk → N for k inputs
e.g. f1 : x1, x2→ x1⊕ x2 ≡ x1, x2→ x1⊕ x2

f2 : [xkey |x], xtype, [xkek|q]→ [xkey |q⊕xtype] IF x = xkek⊕xtype

Graham Steel - Introduction to Security APIs 4 March 2013 - 47/ 55

Decision Procedure

Find the fixpoint:

1. Allocate sufficient memory for all possible terms
2. Store 1 in locations corresponding to initial knowledge, rest

set to 0
3. Exhaustively apply each rule, setting newly discovered terms

to 1
4. Repeat 3 until an attack no new terms are discovered

Some optimisations used (noting new terms)
Details in [Cortier, Keighren, Steel, TACAS’07]
Now we can verify fixes..

Graham Steel - Introduction to Security APIs 4 March 2013 - 48/ 55

IBM Recommendations

Published in response to Bond’s attacks

1. Use asymmetric key crypto for key import – 2 officer protocol
to generate key pair at destination, transfer public key to
source – PKA Symmetric Key Import command

2. More access control – security officers access fewer commands
3. Procedural controls to check entered key parts

2 and 3 verified in a few seconds, but 1 has a simple attack..

Graham Steel - Introduction to Security APIs 4 March 2013 - 49/ 55

Attack on 1

{kek.IMP}PK → {kek}KM⊕IMP PKA Symmetric Key Import

{k.EXP}PK → {k}KM⊕EXP PKA Symmetric Key Import

{pdk}kek⊕PIN , PIN , {kek}KM⊕IMP → {pdk}KM⊕PIN Key Import

{pdk}KM⊕PIN , PIN , {k}KM⊕EXP → {pdk}k⊕PIN Key Export

Graham Steel - Introduction to Security APIs 4 March 2013 - 50/ 55

‘Tool for cryptoKi Analysis’ tookan.gforge.inria.fr

1 = reverse engineering, 2= model sent to model-checker SATMC,
3 = attack found, 4 = attack executed on device

Graham Steel - Introduction to Security APIs 4 March 2013 - 51/ 55

tookan.gforge.inria.fr

New Security APIs - 1

Privacy
I How to be sure an API satisfies a published privacy policy

[May et. al CSFW ’06]
I Smartmeters - how to be sure metering doesn’t reveal privacy

sensitive information [Molina-Markham et al, FC 2012]
I W3C Device APIs Working Group Privacy Rulesets

Graham Steel - Introduction to Security APIs 4 March 2013 - 52/ 55

New Security APIs - 2

I OS APIs - model checking GRLinux policies [Bugliesi et al,
CSF ’12]

I Capsicum - model checking concurrency API vulnerabilities in
the filesystem API [Watson & Anderson ASA’10]

Graham Steel - Introduction to Security APIs 4 March 2013 - 53/ 55

Summary

I Security APIs critical part of system design
- needs to be given attention

I Have seen attacks on VSM, CCA
I Formal analysis can find attacks and verify fixes

- designing for easy analysis is a sound idea
I Theoretical results: Security in general undecidable, but can

recover decidability in some cases
I Practical tools: Tools like Tookan can automatically test

security of APIs
I Security API paradigm now spreading

Graham Steel - Introduction to Security APIs 4 March 2013 - 54/ 55

Further reading

R. Anderson, Security Engineering, Wiley (2nd Ed.)

M. Bond and R. Anderson, API Level Attacks on Embedded
Systems, IEEE Computer Magazine, 2001

D. Longley and S. Rigby, An Automatic Search for Security Flaws
in Key Management Schemes, Computers and Security, 1992,

V. Cortier, G. Keighren and G. Steel, Automatic Analysis of the
Security of XOR-based Key Management Schemes, TACAS ’07

The Analysis of Security APIs Workshop,
http://www.lsv.ens-cachan.fr/~steel/asa/

Graham Steel - Introduction to Security APIs 4 March 2013 - 55/ 55

http://www.lsv.ens-cachan.fr/~steel/asa/

	In this Lecture
	Secure Hardware History
	Secure Hardware History - 2
	Example 1 - Cash Machine Network
	HSMs
	About Your PIN
	Example: Print Customer PIN
	Terminal Comms Key
	Managing Key Types
	Example: Send TC to Terminal
	Attack - Step 2
	Deduction with Horn clauses
	Next half
	CCA Types - 1
	Theorem
	Designing the Decision Procedure
	Decision Procedure
	Summary
	Further Reading

